

╋

+

╇

Power Transmission Leading by innovation

Catalog CF-A-E-13-04

The CENTAFLEX system

CENTAFLEX®

The CENTAFLEX -coupling was developed by CENTA Antriebe in West Germany and introduced to the market in 1970. It is patented in all industrial countries. It is also being manufactured under license in two other countries: Tra

The Miki Pulley Co. Ltd.- Japan and Lovejoy Inc. - USA In 1979 CENTA Transmissions Ltd., an associate company of CENTA Antriebe was formed in England. Meanwhile the manufacture of the CENTAFLEX-couplings increased to over 250.000 units per year. Now more than 25 agencies guarantee worldwide service and availability of CENTAFLEX-couplings.

The idea

A high quality coupling element which - with very little effort - enables a highly flexible coupling to be "custom built" for almost any purpose. The CENTAFLEX contains a highly elastic element which is extensively flexible in any direction, and upon which an entire coupling system is based. This coupling system embodies a combination of numerous positive characteristics, with a versatility of design from common components, not previously achieved.

The principle

A pre-stressed polygon shaped rubber element with metal parts vulcanised in. The important innovation is that the screws connecting the rubber element with the hubs are alternately arranged axially and radially. The radial screws fulfill 2 tasks:

- connecting the rubber element to the hub
- producing a pre-load by radialcompression of the rubber column

Pre-load pressure stress in the

rubber element considerably raises the capacity of the coupling, since it compensates for the tensile stress which otherwise occurs in operation. Under compressive stress the capacity of rubber is multiplied.

Transmission of the peripheral force from the bonded aluminium segments to the hubs is by friction. The stress in the screws is therefore purely tensile and in no way a flexional or shearing stress. For better frictional engagement, the cylindrical hubs for most sizes are knurled on the perimeter. During assembly, the knurl points press into the aluminium and result in a highly stressable combination giving a positive and friction locking connection.

The materials

Precision die-cast aluminium parts, vulcanised into high quality rubber; high tensile self-securing screws and steel hubs machined all over.

The hubs

The hubs have very simple cylindrical or flat mating faces without cams or recesses.

This means that other existing elements (e.g. flywheels, brake discs, clutches, pulleys, gears etc.) can easily be used as hubs. All that is necessary in such cases is to drill and tap a few holes for fastening the rubber element. The simple, easily manufactured form of the hubs permits the manufacture of many special designs, such as elongated hubs. CENTA DRIVES of high technical standards.

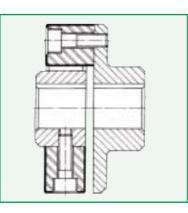
* CENTAFLEX is a registered trademark of CENTA Antriebe

An entire system with the most varied designs and hubs was developed, based on the advantages described above. In addition there are hundreds of special designs. This catalog describes only the important highly flexible designs of the CENTA-FLEX system. Apart from these, several varieties with higher torsional stiffness of the elastic element have been developed, which provide - with the same connecting dimensions and hubs - for further interesting designs in other areas of applications:

CENTAFLEX type H - torsionally stiff, for diesel hydraulic drives

CENTAFLEX type X - torsionally very stiff, angularly flexible free of play and backlash.

The success of a coupling system



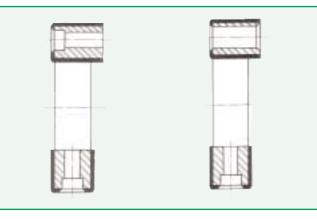
Characteristics and advantages of the **CENTAFLEX-couplings**

- = Simple, compact, smooth-face design
- = Low weight, low moment of inertia
- = High performance, high speed range, large bores permitted, ruptureproof
- = Large angle of twist with progressive characteristic curve (approx. 6-8° at nominal torque)
- = High elasticity and considerable flexibility in any direction (radial, axial, angular) with low counter forces on shafts and bearings. Therefore the shafts do not have to be aligned accurately

- = The action of the CENTAFLEX coupling is shock and vibration absorbing
- tely free from play, uniformly, free from noise, and electrically insulating
- = The coupling requires no maintenance, the rubber parts suffer no wear, providing long useful life with no dirt produced by rubber particles
- The rubber element is air flushed all around; the heat generated is easily conducted away and the rubber element remains cool
- The rubber element can easily be = fitted and dismantled without the use of special tools or tension bands
- = The coupling can be very easily aligned, relying on line of sight or with the aid of a straight edge, without any special templates or gauges

- The elements can be dismantled = transversely without any axial displacement
- The torque is transmitted absolu- = By slackening the radial screws, the drive can easily be seperated and rotated without dismantling
 - No axial reaction forces are imposed on shafts and bearings due to the transmission of torque
 - = Rubber elements are available in various shorehardness grades. This permits variation of the torsional stiffness within wide limits and its adaption to the vibrational requirements of each drive system
 - The rubber elements are available in various materials: Standard: natural rubber Special materials: Perbunan. Neoprene etc.

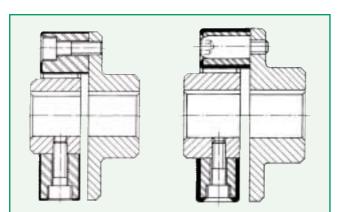
CENTAFLEXthe coupling with the 5-way-flex


Every good elastic coupling has 4-way flexibility:

- 1. torsional elasticity
- 2. radial flexibility
- 3. axial flexibility
- 4. angular flexibilty

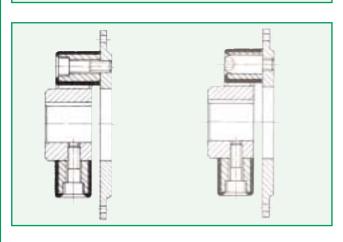
In addition, the CENTAFLEX is uniquely flexible in application, i.e. capable of modification and adaption; CENTAFLEX therefore has 5-way flexibility.

CENTAFLEX coupling design types



Type 0 and 0-S

The rubber element for customers' "own designed" special applications. Available in various shorehard-ness grades and materials.


Type 1 and 1-S

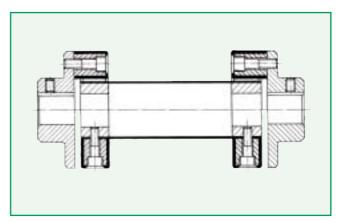
Element with cylindrical hub for existing drive elements, e.g. flywheels, pulleys, brake discs, friction clutches, universal joints, freewheels, gears.

Type 2 and 2-S

Complete shaft couplings for all areas of mechanical engineering. After removing the axial screws, coupled machines can be removed radially, as with "three-part" couplings.

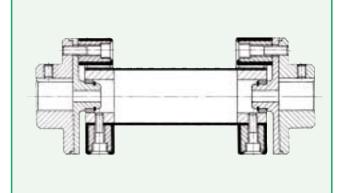
Type 3 and 3-S

Flanged couplings for combustion engines and many other applications. The simple adaptor plate can be adapted to fit any standard or non-standard flywheel or other component.


Type S

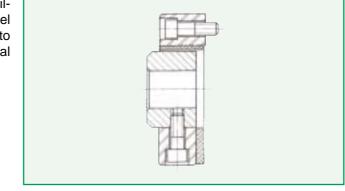
Design "S" is a plug-in variation for applications where axial movement or "blind" assembly in a housing is required. Design "S" is available for all design types and sizes of CENTAFLEX. In addition, there are

Universal joint shaft, type G


Highly elastic universal joint shafts for any assembly length and for a variety of applications. Connecting pieces can be varied as required, and are adaptable. With short assembly length they are suitable for speeds up to 3000 rpm.

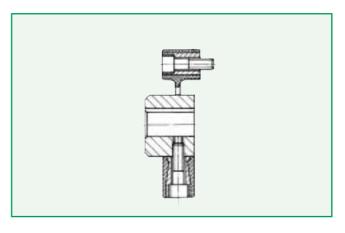
Never surpassed for simplicity and economic pricing! special designs available with extended socket bolts for applications requiring large axial movement or the provision of facilities to change V-belts.

Universal joint shaft, type GZ


Highly elastic universal joint shafts with accurate, maintenance-free centering of the central part for applications with very high speeds and/or long shaft lengths.

CENTAFLEX design H

Torsionally stiff, plug-in, high temperature and oilresistant design series, specially designed for diesel hydraulic drives. Numerous design types identical to those previously described, and with further special designs.


Detailed description is given in catalog CF-H.

CENTAFLEX design X

Torsionally very stiff design series, free from play or backlash, but axially and angularly flexible. This series is temperature and oil resistant. Plug-in types suitable for blind fitting, or axially stiff types are available. This series is especially suitable for torsionally stiff universal joint shafts identical to the above design type G.

Detailed description is given in catalog CF-X.

A 1.0 Performance table

CE	NTAFLEX	size		1	2	4	8	12	16	22	25	28	30	50	80	90	140	200	250	400	remarks
Pos.	Description	Symbol	unit																		
1	Nominal torque	T _{KN}	Nm	10	20	50	100	140	200	275	315	420	500	700	900	1100	1700	2400	3000	5000	
2	Maximum torque	T _{Kmax}	Nm	25	60	125	280	360	560	750	875	1200	1400	2100	2100	3150	4900	6000	8750	12500	
3	Angle of	Τ _{KN}	grad	6°	6°	5°	5°	3°	5°	3°	5°	3°	5°	3°	3°	5°	3°	3°	3°	3°	
3	twist	T _{Kmax}	grad	17°	17°	12°	14°	7,5°	14°	7,5°	14°	7,5°	14°	7,5°	7,5°	14°	7,5°	7,5°	7,5°	7,5°	
4	max. speed	n _{max}	min ⁻¹	10000	8000	7000	6500	6500	6000	6000	5000	5000	4000	4000	4000	3600	3600	3000	3000	2500	
5	angular elasticity	dKw	grad	3°	3°	3°	3°	2°	3°	2°	3°	2°	3°	2°	2°	3°	2°	2°	2°	2°	dependant upon speed
6	axial elasticity	DKa	mm	2	3	3	4	4	5	5	5	5	5	5	3	5	5	5	5	5	
7	radial elasticity	dKr	mm	1,5	1,5	1,5	2	2	2	2	2	2	2	2	1,5	2	2	2	2	2	dependant upon speed
8	cont. oscillating torque	T _{KW}	Nm	5	10	20	40	50	80	100	125	150	200	300	320	450	700	960	1250	2000	
9	allowable energy loss	P _{KV}	W	6	10	15	25	30	40	50	68	75	80	90	100	120	150	170	200	250	
10	dyn. torsional	C _{Tdyn}	Nm/rad	90	180	550	900	2700	2000	6100	2800	7500	4800	12000	16000	10500	26500	38700	43000	75000	50 Shore
10		C _{Tdyn}	Nm/rad	140	290	850	1500	4400	3400	9000	4500	12000	7800	19000	25000	16000	40000	60000	67000	120000	60 Shore
11	Axial- siuffness	c _a	N/mm	38	22	75	75	250	100	500	140	550	190	650	850	220	650	900	1150	1300	
12	Radial- stiffness	C _r	N/mm	150	150	500	500	1000	500	1300	600	1400	750	2200	2900	1000	2300	3100	4100	6000	
13	angular stiffness	C _W	Nm/grad	0,3	0,3	2,4	3,6	9,0	5,0	12,0	7,0	17,0	9,0	26,0	34,0	17,0	38,0	48,0	68,0	88,0	

Figures given for Pos. 3, 11, 12, 13 are values for a shorehardness of 60° measured statically ($C_{dyn} = C_{stat} \bullet 1,3$)

Nominal torque $T_{KN} \!$ Torque which can be transmitted throughout the entire permitted speed range.

Maximum torque T_{Kmax} : Torque which may be applied for short periods 10^5 times, pulsating in the same direction of rotation, or $5x10^4$ alternating Continuously oscillating torque T_{KW} : Amplitude of continuously permissible torque fluctuation at max. frequency of 10Hz and a basic load up to nominal torque T_{KN}

A 1.1 Starting up factor

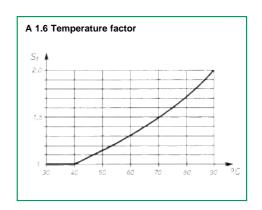
Z	£120	120< Z £ 240	>240
Sz	1,0	1,3	ask
			CENTA

Z = start frequency per hour

	•		•
A 1.2	Frequ	Jency	factor

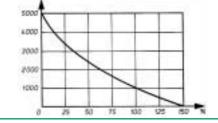
A 1.2 Frequency factor					
f in Hz	£ 10	> 10			
Sf	1	$\sqrt{\frac{f}{10}}$			
A 1.3 Shorehardness					

Conversion factor u					
Shore	50	60	70	75	
u	0,7	1	1,6	2,3	


A 1.4 Surge or Pulse factor

SA/SL	
1,6	Light starting load
1,9	Medium starting load
2,2	Heavy starting load

A 1.5 Resonance factor V_R


relative	damping	w
I Clative	uamping	Ψ

Natural rubber(NR)					
Shore	VR	ψ			
50	10	0,6			
60	8	0,78			

A 1.7 Permissible angular and radial misalignment

permissible angular and parallel offset misalignment is dependant upon the speed when utilising the nominal torque capacity. % of line 5 or 7

Coupling selection

The CENTAFLEX-coupling must be suitable dimensioned to prevent the stresses:

- a) Nominal torque T_{KN}
- b) Maximum torque T_{Kmax}
- c) Continuously oscillating torque T_{KW}

from exeeding the permissible values in any operational state. The following formulae will be helpful.

Stress due to the torque

The permissible nominal torque at all operating temperatures must be at least as great as the nominal torque of the drive or load side.

$$T_{AN}$$
 S_t \pm T_{KN} \mp T_{LN} S_t

Factors of influence:

Nominal torque	drive side	T _{AN}	Nm
	load side	T _{LN}	Nm
Temperature factor	St	(diagram	n A 1.6)

Performance formula:

 $T_{AN} \mid T_{KN} \mid T_{LN} = 9555 \quad \frac{P}{n} \cdot \frac{kW}{rpm} \qquad Nm$

Stress due to torque pulses:

The permissible max. torque of the coupling must at all operating temperatures be at least as great as the torque pulses T_{AS} and T_{LS} (Nm) occuring in operation.

Factors of influence : start-up factor S_z (Table A 1.1) pulse factor drive side S_A (Table A 1.4) load side S_L Mass factor drive seite M_A

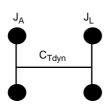
load side

$$M_{A} = \frac{J_{L}}{I_{A} + I_{L}}$$
$$M_{L} = \frac{J_{A}}{J_{A} + J_{L}}$$

Nm

Drive side pulse

£


M

Load side pulse

 $T_{Kmax} \ {}^{*} \ M_L \quad T_{LS} \quad S_L \quad S_Z \quad S_t \qquad Nm$

Stress due to a periodic oscillating torque Position of resonance (resonance speed)

For easier calculation, the existing unit is best reduced to a 2-mass torsional oscillating system if possible.

Total mass r	noment of i	inertia
--------------	-------------	---------

drive side	J _A	kgm²
load side	J_L	kgm²
Dyn. torsional stiff-	C _{Tdyn}	Nm/rad
ness of the coupling	,	

Determining the resonance speed of the ith order

$$n_{R} = \frac{30}{\Pi \ i} \sqrt{C_{Tdyn} \frac{J_{A} + J_{L}}{J_{A} \ JL}} \ min^{-1}$$

i = number of oscillations generated per revolution

Distance from resonance

Where there is considerable oscillation generated, the resonance can be placed outside the operating speed range by the appropriate selection of the coupling torsional stiffness. The following applies for the required resonance distance:

Passing through resonance

The permissible max. torque TKmax must not be exceeded while running through the resonance.

Factors of influence: generating torque

generating torque		
drive side	Τ _{Ai}	Nm
load side	T _{Li}	Nm
Decononae feator	17	/Table

Resonance factor	V_R	(Table A 1.5)
------------------	-------	---------------

Drive side oscillation generation

Load side oscillation generation

$$T_{Kmax} \neq M_L \quad T_{Li} \quad V_R \quad S_Z \quad S_t \qquad Nm$$

Continuously oscillating torque

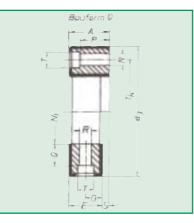
For the operating frequency, the oscillating torque must be compared with the permissible continuously oscillating torque of the coupling. The continuously oscillating torque existing is dependent upon the amplifying factor outside the resonance.

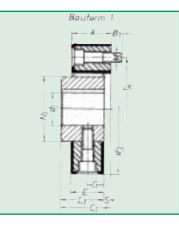
Amplifying factor V outside the resonance.

Drive side oscillation generation

Load side oscillation generation

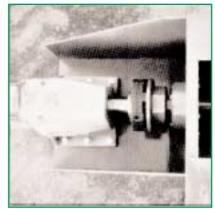
 $T_{KW} \ \ \ \ M_L \ \ \ T_{Li} \ \ V \ \ S_t \ \ S_f \ \ \ Nm$


Frequency factor S_f (Table A 1.2)


We shall be pleased to carry out torsional vibration calculations for you in our offices.

All data, dimensions and information of this catalog are given without guarantee. Amendments and improvements may be made without notice. This technical document has legal protection (copyright).

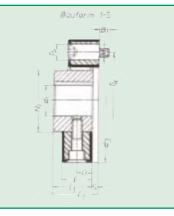
Dimensions, Basic Design Types 0, 1, 2, 0-S, 1-S, 2-S.

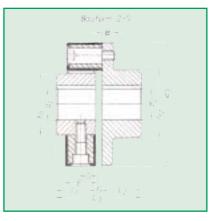


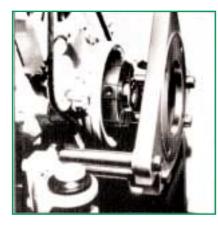
Size	d ₁ d ₂																
	min. max.	min max.	d ₃	А	В	B ₁	C ₁	E	G	L ₁	L ₂	L ₃	М	N_1	N_2	S	Τ _S
1	8 19	25	56	24	7	7	26	22	11	24	24	50	M 6	30	36	2	10
2	10 26	38	85	24	8	8	32	20	10	287	28	60	M 8	40	55	4	14
4	12 30	45	100	28	8	8	34	24	12	30	30	64	M 8	45	65	4	14
8	38	55	120	32	10	10	46	28	14	42	42	88	M 10	60	80	4	17
12	38	55	122	32	10	10	46	28	14	42	42	88	M 10	60	80	4	17
16	48	70	150	42	12	12	56	36	18	50	50	106	M 12	70	100	6	19
22	48	70	150	42	12	12	56	36	18	50	50	106	M 12	70	100	6	19
25	55	85	170	46	14	14	61	40	20	55	55	116	M 14	85	115	6	22
28	55	85	170	46	14	14	61	40	20	55	55	116	M 14	85	115	6	22
30	65	100	200	58	16	16	74	50	25	66	66	140	M 16	100	140	8	25
50	65	100	200	58	16	16	74	50	25	66	66	140	M 16	100	140	8	25
80	65	100	205	65	16	16	75	61	35	66	66	145	M 16	100	140	4	25
90	85	110	260	70	19	20	88	62	31	80	80	168	M 20	125	160	8	32
140	85	110	260	70	19	20	88	62	31	80	80	168	M 20	125	160	8	32
200	105	110	300	80	19	20	102	72	36	94	90	192	M 20	145	160	8	32
250	115	130	340	85	19	20	108	77	22,5 54,5	100	100	208	M 20	160	195	8	32
400	120	140	370	105	25	28	135	95	28,5 66,5	125	125	260	M 24	170	200	10	45

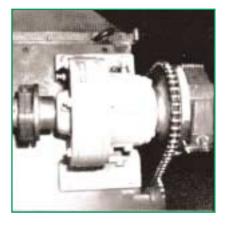
The CENTAFLEX couplings have been proven in many areas of mechanical engineering. The major area of application lies with diesel driven stationary and mobile equipment as well as a very wide range of industrial applications. The photographs below illustrate some typical examples of application: Boat drives, mechanical conveying and handling, agricultural machinery, front power take-off on diesel engines for the most varied applications.

Typical examples of application for CENTAFLEX -couplings

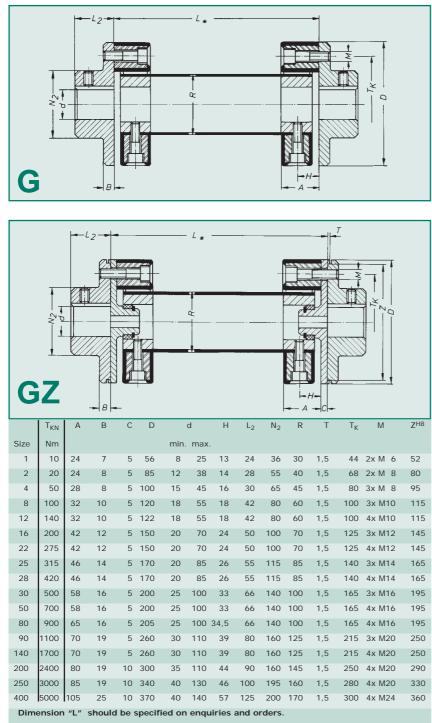


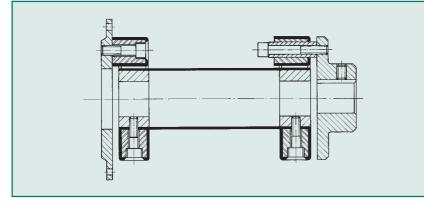





					Weight k	g				Mass mo	ment of in	ertia J	kgcm ²		
Т	R	Р	0	T _K /Division	Type. 0	Type. 1	Type. 2	Type. 1/S	Type. 2/S	Type. 0	Type. 1	Type. 2	Type. 1/S	Type. 2/S	Size
10,5	6,5	18	5	44 / 2x180°	0,06	0,21	0,47	0,24	0,49	0,35	0,75	1,6	0,86	1,7	1
13,5	8,5	12	14,2	68 / 2x180°	0,15	0,46	1,06	0,49	1,09	1,25	2,5	7,3	3,3	8,1	2
13,5	8,5	17	18,5	80 / 3x120°	0,21	1,31	2,31	0,70	1,70	3,3	5,0	11,3	6,5	12,8	4
16,5	10,5	20,5	20,5	100 / 3x120°	0,32	1,35	3,45	1,44	3,54	7,0	15,0	41,0	18,6	44,6	8
16,5	10,5	20,5	20,5	100 / 4x 90°	0,35	1,45	3,55	1,56	3,66	8,4	18,2	44,2	20,0	46,1	12
18,5	12,5	23,5	25,2	125 / 3x120°	0,65	2,28	6,16	2,33	6,21	23,4	42,5	118,8	49,1	125,4	16
18,5	12,5	23,5	25,2	125 / 4x 90°	0,70	2,52	6,42	2,62	6,62	26,6	50,4	126,5	70,2	146,3	22
21,5	14,5	26,0	27,0	140 / 3x120°	0,84	3,59	9,31	3,77	9,49	50,2	90,7	215,0	102,7	227,0	25
21,5	14,5	26,0	27,0	140/4x 90°	0,95	3,79	9,51	4,05	9,76	55,6	102,4	247,8	113,2	258,5	28
24,5	16,5	34,5	34,5	165 / 3x120°	1,43	5,66	15,21	6,02	15,57	102,0	200,0	545,5	220,4	565,9	30
24,5	16,5	34,5	34,5	165 / 4x 90°	1,60	6,04	15,60	6,50	16,05	104,0	205,0	550,5	253,4	598,9	50
24,5	16,5	34,5	34,5	165 / 4x 90°	2,10	6,85	16,60	7,25	17,00	131,8	240,3	585,5	263,9	609,1	80
30,5	20,5	45,5	47,0	215 / 3x120°	3,30	11,55	28,67	12,23	29,35	450,0	657,5	1630,1	759,2	1731,8	90
30,5	20,5	45,5	47,0	215 / 4x 90°	3,65	12,33	29,45	13,22	30,36	572,0	770,0	1742,6	873,0	1845,6	140
30,5	20,5	44,5	45,5	250/4x 90°	5,75	13,13	33,16	14,07	34,11	1356,0	1598,0	3050,0	1686,0	3129,0	200
30,5	20,5	60,0	59,0	280 / 4x 90°	7,10	18,98	44,42	20,01	45,44	1754,0	2404,0	5264,0	2529,0	5389,0	250
42,5	24,5	72,0	77,0	300 / 4x 90°	11,25	26,58	57,23	29,34	59,95	3380,0	4485,0	9130,0	4683,0	9328,0	400

Elastic couplings mounted on friction clutches. The last photograph shows a particu-larly interesting application: A CENTAFLEX between an electric motor and bing type of coupling in front of a chain drive.


reduction gear, and a second CENTAFLEX coupling as a torsional oscillation damping and shock absor-



The CENTAFLEX universal joint shafts are proven, extremely simple, versatile and torsionally highly elastic.

They dampen noise, torsional oscillation and shock.

They compensate for considerable axial, radial and angular misalignment.

The lengths are not standardised, but made individually in accordance with customers' requirements; but they are, nonetheless very moderately priced. The connecting parts (hubs) can also be adapted to suit requirements. CENTAFLEX universal joint shafts require no maintenance whatsoever; the centre part can be removed radially (transversely) without displacing the coupled machines.

Design G

This is the simplest design type; the centre part is centered only by the CENTAFLEX elements. Suitable for short and medium lengths and for speeds up to approx. 1500 rpm.

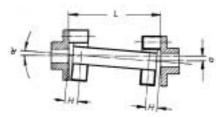
Please also see the diagram on page 11 for additional information.

Design GZ

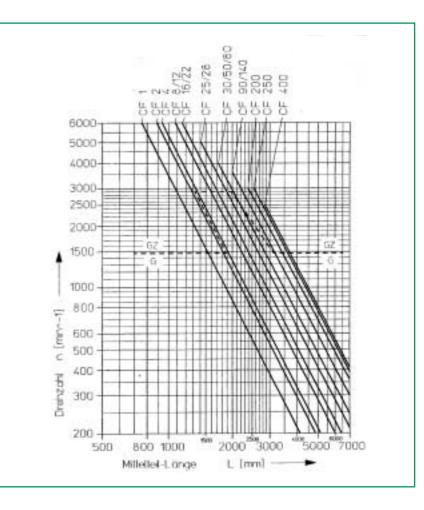
Here, the centre assembly is accurately located on the centering plate and maintenance free bearings. This design is suitable for long lengths and/or high speeds. The centre assembly can be withdrawn without disturbing the driving or driven hubs. In cases of doubt, the decision whether to chose design G or GZ should be left to us, since a clear demarcation is difficult.

The sectional drawing on the left shows one of the many special designs, with an adaptor plate for a diesel engine and with extensive axial movement permitted by means of long socket bolts.

Selection of CENTAFLEX Universal Joint Shafts:


Torque capacity is in accordance with the table on page 6.

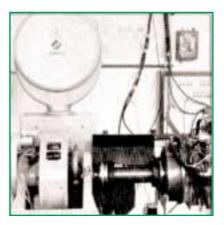
Due to the use of two CENTA-FLEX elements, the values of axial elasticity and for the angle of twist are doubled, the values for torsional stiffness and the axial spring values are halved.


Permissible angular misalignment is shown in diagram A 1.7 and the following formula:

Design G: $a = \tan \alpha (L- 2H)$ a = parallel offset (mm)Design GZ: $a = \tan \alpha [L-2 (H+C)]$ L; H and C as in dimension table.

The maximum permissible length

for the centre part is dependant on the speed and can be found in the diagram on the right.

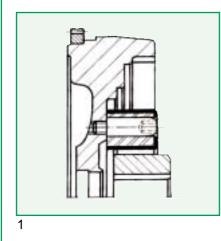

The dotted line gives an approximate indication as to whether type G or GZ should be used on short shafts, but only in respect of speed, not of length. We recommend that all shafts regardless of length are of the GZ type if they run at speeds above those indicated by the dotted line. Examples of typical applications: Screw Jacks, compressors, engine test benches

(Size 16 GZ; n= 7200 rpm).

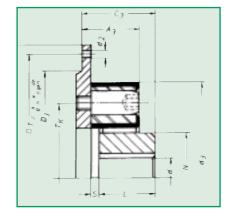
Other applications: Boat drives, diesel drives for centrifugal pumps, air conditioning, construction machinery, general mechanical engineering.

CENTAFLEX-couplings for diesel engines

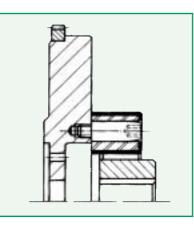
This is the central point of application for CENTAFLEX. We supply suitable CENTAFLEX couplings for practically any diesel or petrol engine, to suit the flywheel side as well as for the power take-off at the front end of the crankshaft, e.g. Caterpillar, Detroit, Deutz, Dorman, Ford, Gardner, Hatz, Leyland, Lister, MAN, Perkins, Petter, Rolls Royce, VW and many others.


The number of the existing assembly drawings is so great that it is not possible to include them in a brochure.

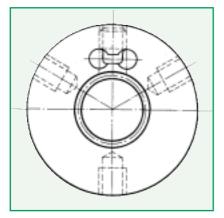
The type most extensively used for diesel engine flywheels is SAE standard J620. The dimensional sheet shows appropriate couplings for the plug-in (blind fitting) design (e.g. for generator drives).

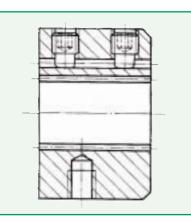

For Deutz and Perkins engines, flywheels with tapped holes are available for CENTAFLEX couplings. This enables couplings to be fitted direct - without and adaptor plate- with types 1 and 1-S, and results in particularly compact and economically priced couplings.

Please ask for our detailed offer for your specific requirements.


- 1 Deutz F3-6L912 available for engines 208, 210, 511, 912, 913 and 413
- 2 Perkins 3, 4, 6 and 8 cylinders Perkins part-no. 31221322
- 3 Intermediate couplings for universal joint shafts.

Type 3-S-SAE




140 30 85 260 80 98 80 125 8 215/4x 90° (10°) 11½° 14° 200 35 105 300 90 112 94 145 8 250/4x 90° 11½° 14″ 16°											
161548150486250706125/3x120° $6\%'$ $7\%'$ 8°221555170526755856140/3x120°8°8°251555170567155856140/3x120°10°11%''3020652006884661008165/3x120°10°11%''5020652006884661008165/4x 90°10°11%''9030852608098801258215/3x120°(10°)11%''14030852608098801258215/4x 90°(10°)11%''14"14030852608098801258215/4x 90°(10°)11%''14"2003510530090112941458250/4x 90°11%''14"16"25040115340951181001608280/4x 90°11%''14"16"4004012037011515012517010300/4x 90°14"'16"6/2"215,9200,02180962,6014716"7/2"241,3222,25200983,252288"263,52244,47<	Size			d ₃	A_3	C3	L ₁	N ₁	S	T _K /division	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	12	38	120	38	52	42	60	4	100/3x120°	61⁄2" 71⁄2"
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	15	48	150	48	62	50	70	6	125/3x120°	61⁄2" 71⁄2" 8"
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	15	55	170	52	67	55	85	6	140/3x120°	8″
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25	15	55	170	56	71	55	85	6	140/3x120°	10″
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	20	65	200	68	84	66	100	8	165/3x120°	10" 11½"
14030852608098801258215/4x90°(10°)11½° 14°2003510530090112941458250/4x90°11½° 14″16°25040115340951181001608280/4x90°11½° 14″16°4004012037011515012517010300/4x90°14″16°4004012037011515012517010300/4x90°14″16°5AE57200,02180962,6014714716°7½°215,9200,02180962,601477½°241,3222,25200983,252288″263,52244,472201163,9032810°314,32295,272701187,2096611½°352,42333,373101189,60158414″466,72438,1540513819,40542116″517,548945013824,608272	50	20	65	200	68	84	66	100	8	165/4x 90°	10" 11½"
200 35 105 300 90 112 94 145 8 250/4x 90° 111/2" 14" 16' 250 40 115 340 95 118 100 160 8 280/4x 90° 111/2" 14" 16' 400 40 120 370 115 150 125 170 10 300/4x 90° 14" 16'' 400 40 120 370 115 150 125 170 10 300/4x 90° 14" 16'' 400 40 120 370 115 150 125 170 10 300/4x 90° 14" 16'' SAE 517 215,9 D D D 42 Z weight Mass moment of inertia SAE 215,9 200,02 180 9 6 2,60 147 14'' 14'' 14''' 14'''' 14''''' 125 11 6 3,90 328 14''''''''''' 11'''''''''''''''''''''''''''''''''''	90	30	85	260	80	98	80	125	8	215/3x120°	(10") 11½" 14"
250 40 115 340 95 118 100 160 8 280/4x 90° 11½° 14″ 16° 400 40 120 370 115 150 125 170 10 300/4x 90° 11½° 14″ 16° nominal SAE size DA r7 DT DJ DJ d2 Z weight kg Mass moment of inertia J kgcm² 14″ 16″ 6½″ 215,9 200,02 180 9 6 2,60 147 14″ 7½″ 241,3 222,25 200 9 8 3,25 228 14″ 10″ 10″ 314,32 295,27 270 11 8 7,20 966 111/2″ 1584 11″ 352,42 333,37 310 11 8 9,60 1584 14″ 466,72 438,15 405 13 8 19,40 5421 11 16″ 517,5 489 450 13 8 2,600 8272	140	30	85	260	80	98	80	125	8	215/4x 90°	(10") 11½" 14"
40 40 120 370 115 150 125 170 10 300/4x 90° 14" 16" nominal SAE Γ^{7} D_{T} D_{J} D_{J} D_{2} Z weight kg Mass moment of kgcm² 6/2" 215,9 200,02 180 9 6 2,60 147 7/2" 241,3 222,25 200 9 8 3,25 228 8" 263,52 244,47 220 11 6 3,90 328 10" 314,32 295,27 270 11 8 7,20 966 11½" 352,42 333,37 310 11 8 9,60 1584 14" 466,72 438,15 405 13 8 19,40 5421 16" 517,5 489 450 13 8 24,60 8272	200	35	105	300	90	112	94	145	8	250/4x 90°	11½" 14" 16"
nominal SAE sizeD T<	250	40	115	340	95	118	100	160	8	280/4x 90°	11½" 14" 16"
SAE size f7 kg of inertia J kgcm² 6½" 215,9 200,02 180 9 6 2,60 147 7½" 241,3 222,25 200 9 8 3,25 228 8" 263,52 244,47 220 11 6 3,90 328 10" 314,32 295,27 270 11 8 7,20 966 11½" 352,42 333,37 310 11 8 9,60 1584 14" 466,72 438,15 405 13 8 19,40 5421 16" 517,5 489 450 13 8 24,60 8272	400	40	120	370	115	150	125	170	10	300/4x 90°	14" 16"
7½"241,3222,25200983,252288"263,52244,472201163,9032810"314,32295,272701187,2096611½"352,42333,373101189,60158414"466,72438,1540513819,40542116"517,548945013824,608272	SAE			C	т	Dj		d ₂	Z	0	of inertia
8" 263,52 244,47 220 11 6 3,90 328 10" 314,32 295,27 270 11 8 7,20 966 11½" 352,42 333,37 310 11 8 9,60 1584 14" 466,72 438,15 405 13 8 19,40 5421 16" 517,5 489 450 13 8 24,60 8272	6½″		215,9	2	00,02	180		9	6	2,60	147
10° 314,32 295,27 270 11 8 7,20 966 11½° 352,42 333,37 310 11 8 9,60 1584 14° 466,72 438,15 405 13 8 19,40 5421 16° 517,5 489 450 13 8 24,60 8272	7½″		241,3	2	22,25	200		9	8	3,25	228
11½* 352,42 333,37 310 11 8 9,60 1584 14* 466,72 438,15 405 13 8 19,40 5421 16* 517,5 489 450 13 8 24,60 8272	8″		263,52	2	44,47	220		11	6	3,90	328
14" 466,72 438,15 405 13 8 19,40 5421 16" 517,5 489 450 13 8 24,60 8272	10″		314,32	2	95,27	270		11	8	7,20	966
16" 517,5 489 450 13 8 24,60 8272	11½″		352,42	3	33,37	310		11	8	9,60	1584
	14″		466,72	4	38,15	405		13	8	19,40	5421
Example of coupling reference CF-A-30-3-S-SAE10 * Z = number of holes	16″		517,5	4	89	450		13	8	24,60	8272
	Example	of cou	pling refer	rence Cl	-A-30-3-	S-SAE10			* Z = n	umber of holes	

2

Path of clamping force

CENTALOC Clamping Hub

It is well known that all splined steel connections, which are not free from play tend to wear due to "hammering" and fretting corrosion.

The shaft of hydrostatic pumps for mobile equipment nearly always have spline or involute profiles. The unavoidable play, due to the manufacturing tolerances on the flanks of these profiles between shaft and hub, permits minor relative movements in operation leading to wear. Even hubs and shafts made from high quality and hardened steels cannot solve this problem in its essence, but can at best only reduce the wear. The problem can be solved effectively only when the connection between shaft and hubs is made free from play.

With this objective in mind, we developed the CENTALOC clamping hub. This new type of clamp hub has a slot arranged tangentially to the bore. On the inner part of this slot, strong forces are applied through one or more set screws. The hub is radially pressed inwards in this area, i.e. pressed firmly against the shaft profile. The opposing reaction forces of the clamping screw are diverted within the hub causing it to be pressed firmly against the shaft. The hub thus becomes firmly locked against the shaft around its diameter i.e. absolutely free from play. It is at the same time also locked axially. The incidental minor deformations of the hub occur within the elastic limit and there is no permanent deformation. After slackening the clamping screws, the hub can easily be dismantled or re-fitted. This procedure can be repeated as often as may be required.

Use of the CENTALOC clamping hub does not present any difficulty at the assembly stage with the blind fitting design type S, H or X. When assembling for example a motor and pump, the cylindrical coupling hub is simply mounted on the pump shaft and locked prior to motor and pump being assembled together. The coupling housing does not, therefore, require any access holes.

The CENTALOC clamp hub can be selected for all design types of CENTAFLEX. The clamping should preferably be arranged in the cylindrical inner hub; but it is also possible to manufacture flanged hubs with the clamping facility.

The connecting details and external dimensions of the CEN-TAFLEX coupling are not altered by the CENTALOC clamping facility.

The patented CENTALOC clamp hub has already been proved in thousands of hard applications. It is recommended by major manufacturers of hydraulic pumps. This is evidence of the fact that you can expect real solutions to your problems for CENTA power transmission engineers.

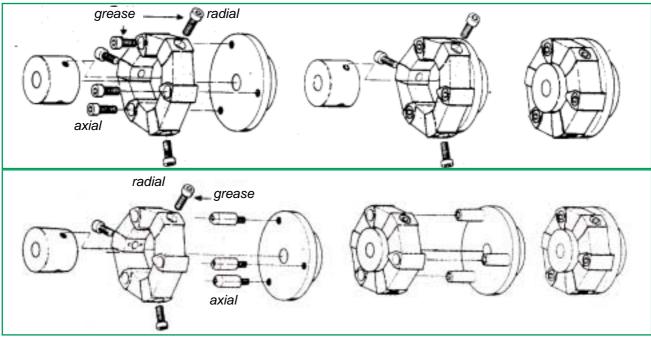
Fitting instructions for CENTAFLEX-couplings

with highly elastic rubber elements

Important notes - observe strictly

The radial and axial screws connecting the rubber element to the hubs must all be tightened to the torque given in the table below, using a **torque wrench**.

Tightening with a torque wrench is particularly important withthe larger sizes. Tightening "by feel" will not do, as experience has proved the tightening torques in such cases are far too low.


Tightening torques which are too low will inevitably lead to slackening of the screws in service and consequently to the destruction of the coupling.

Ensure that on tightening the screws, the aluminium bushes in the rubber part are not twisted at the same time, but sit straight. In order to reduce friction between the screw head and the aluminium part, a small amount of grease should be applied under the head of the screw before fitting. If necessary, use a suitable tool for applying counter pressure on the element to prevent twisting of the rubber part during tightening of the screws. This is particularly important with the radial screws, otherwise the cylindrical faces between aluminium insert and hub will not engage on the full area, but only on two corners. This will inevitably lead to slackening of the screws and subsequent destruction of the coupling. If the coupling is supplied in a pre-assembled state, do not dismantle it, but fit it in this condition.

CENTAFLEX Size	1	2	4	8 / 12	16 / 22	25 / 28	30	50 / 80	90 / 140	200 / 250	400
Screw Size	M 6	M 8	M 8	M 10	M 12	M 14	M 16	M 16	M 20	M 20	M 20 / M24
Tightening torque Nm	10	25	25	50	85	140	220	220	500	500	610 /1050
тКр	1,0	2,5	2,5	5	8,5	14	22	22	50	50	61 / 105

Standard Design

Fith the hubs onto the shafts or the adaptor plate onto the flywheel.

Fit the rubber element to the flanged hub or flywheel, by means of axial screws. This must be carried out before engaging the radial screws in the cylindrical hub.

Push the shaft-mounted cylindrical hub inside the rubber element and then fasten the rubber element on it with radial screws. During this process, the rubber element is compressed radially and is pre-loaded for increased capacity.

Design S (plug-in or blind fitting type)

Fit the hubs onto the shafts or the adaptor plate onto the flywheel.

Fit the axial socket bolts on ot the flange hub or adaptor plate on the flywheel.

Position the element with the side having the rubber free face of the axial aluminium inserts towards the flange hub and, using the radial screws, mount it on the cylindrical hub. During this process, the rubber element is pulled together radially and receives its pre-load. Then, push the coupled elements together and in doing so, carefully slide the coupling with light axial pressure onto the socket bolts. The rubber element is subjected to a little more radial compression by the socked bolts, and the pre-load is thus increased. The axial bores in the rubber element should be smeared lightly with grease beforehand to allow the socket bolts to slide easily in the inserts.

Use only the "Inbus Plus" screws provided which are marked on the threads with a micro-encapsulated adhesive which locks the screw in the thread and secures them reliably against slackening. For adequate effect, the hardening period for this adhesive after bolting up is approximately 4-5 hours at room temperature (20°C). The coupling should not be operated before this period has elapsed.

The adhesive will be fully hardened after 24 hours. Higher temperatures will speed up the hardening process, at 70°C (using a hot air blower), for instance, the hardening will take only 15 minutes. Inbus Plus is temperature proof between -80° and +90°C and the screws can be reused up to 3 times max. Any adhesive stripped off during bolting up will settle between the hub and the aluminium part, but this will have a beneficial effect in that it enhances the friction grip between these parts.

Note: Anaerobic adhesives (such as Loctite, Omnifitic etc.) will loosen the adhesion of the rubber and the insert and will consequently destroy the coupling.

Such adhesives should therefore be avoided if possible. Where the use of this adhesive is unavoidable apply it very sparingly so that no surplus adhesive will moisten the rubber.

We cannot accept any complaints concerning rubber parts which have become defective through the action of adhesives not supplied or recommended by us.

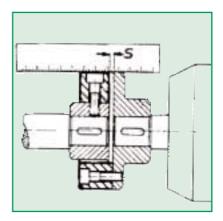
The coupling is completely maintenance-free and does not require any lubrication. Splashing with oil and similar substances should be avoided, since natural rubber is not oil-resistant.

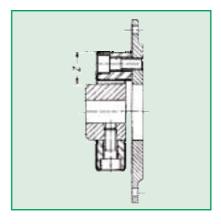
However occasional minor contact with oil or grease is not harmful as this oil will be thrown off during rotation of the coupling.

CENTALOC clamping hub

If the hubs are equipped with CENTA-LOC clamping (see page 13), the clamping screws must be tightened at least to the following tightening torques:

clamp screw	Tightening torque (Nm)
M 10	30
M 12	50
M 14	70
M 16	120
M 20	200


After assembly, the coupling should be carefully aligned if the coupled elements are not already in good alignment by virtue of being spigot located. In the interest of a long service life of the coupling, the higher the speed, the more meticulous should the alignment be. In design type 2, the alignment can very easily be checked with a straight edge. The outer diameter of the flange hub must be flush with the outer diameter of the rubber element in those areas where the radial screws sit: i.e. in different radial positions.


In design types 1 and 3 the distance "Z" must be measured at all axially bolted points of the rubber element (2, 3 or 4 points depending on the size) and must be set as accurately as possible to the value "Z" quoted in the table below.

For spigot located components there is no need to align the coupling.

Position of cylindrical hubs:

The long end of the cylindrical hub, usually identifiably by a chamfer, is normally as shown in the drawing below. However, in some special applications, the hub must be reversed. When in doubt, install as shown in the relevant installation drawing.

Ins	tallation	ta	able:	Screw	fastener			
details,	dimensio	on	"S"	between	the	hubs		
and dir	nension "2	Ζ".						

CENTAFL	EX Size	1	2	4	8 / 12	16 / 22	25 / 28	30	50 /80	90	140	200	250	400
Standard	Design	M6x10	M8x20	M8x25	M10x30	M12x35	M14x40	M16x50	M16x50	M20x65	M20x65	M20x80	M20x80	M24x100
		M6x25												M20x100
Type "S"	Special bolt	M6	M8	M8	M10	M12	M14	M16	M16	M20	M20	M20	M20	M24
Type 5	screws	M6x10	M8x10	M8x25	M10x30	M12x35	M14x40	M16x50	M16x50	M20x65	M20x65	M20x65	M20x80	M20x100
Universal	joint shaft	M6x10												M24x100
G		M6x25	M8x20	M8x25	M10x30	M12x35	M14x40	M16x50	M16x50	M20x65	M20x65	M20x65	M20x80	M20x100
u/j shaft	radial	M6x10	M8x20	M8x25	M10x30	M12x35	M14x40	M16x50	M16x50	M20x65	M20x65	M20x65	M20x80	M20x100
GZ	axial	M6x30	M8x25	M8x30	M10x35	M12x40	M14x45	M16x55	M16x55	M20x70	M20x70	M20x80	M20x90	M24x100
Dimensio	n "S"													
mm		2	4	4	4	6	6	8	8/4	8	8	8	8	10
Dimensio	n "Z"													
mm		13	22,5	37,5	30/31	40	42,5	50	50/52,5	67,5	67,5	77,5	90	100

CENTA Australia

CENTA Denmark

CENTA Italy

THE DESIGNATION OF 11 Hilling of the Local Division in which the local division in the local div

CENTA Headquarters Germany

CENTA Great Britain

CENTA Singapore

CENTA Netherland

CENTA Norway

CENTA USA

the international service CENTA

Subsidiaries

CENTA

Australia CENTA Transmissions Pty. Ltd. P.O. Box 6245 South Windsor, NSW 2756

Austria Hainzl Industriesysteme GmbH Industriezeile 56 A-4040 Linz

Belgium Caldic Techniek Belgium N.V. Tollaan 73 B-1932 Sint-Stevens-Woluwe

CENTA Transmissoes Ltda. Rua Josè Américo Cançado Bahia 199 Cidade Industrial 32.210-130 Contagem MG

Canada CENTA CORP. 815 Blackhawk Drive Westmont, IL 60559, USA

Chile Comercial TGC Ltda. Calle Dr. M. Barros Borgoño 255-263 Casilla 16.800 (P.O. Box) Santiago-Providencia

🗪 China CENTA Representative Office Room.11C, Cross Region Plaza No. 899 LingLing Road Shanghai, PC200030

🗪 Denmark CENTA Transmissioner A/S A.C. Illums Vej 5 DK-8600 Silkeborg

> Egypt Hydraulic Misr P.O. Box 418 Tenth of Ramadan City

Finland Movetec Oy Hannuksentie 1 FIN-02270 EPOO

France Prud'Homme Transmissions 66 Rue des St. Denis B.P. 73 F-93302 Aubervilliers Cedex

🗪 Germany CENTA Antriebe Kirschey GmbH Bergische Str. 7 D-42781 Haan

👓 Great Britain CENTA Transmissions Ltd. Thackley Court, Thackley Old Road, Shipley, Bradford, West Yorkshire, BD18 1BW

Greece Industry: Marine: Kitko S.A. Technava S.A.

Athens

6,Loudovikou Sq. 18531 Piraeus 1, Rodon St. 17121 N.Smymi

Hong Kong/China Foilborn Enterprise Ltd. Unit A8-9, 13/F Veristrong Industrial Centre 34-36 Au Pui Wan Street Fotan, Shatin N.T. Hong Kong

India NENCO National Engineering Company J-225, M.I.D.C., Bhosari, Pune - 411 026

Israel Redco Equipment & Industry 3, Rival Street Tel Aviv 67778 IL - Tel Aviv

CENTA Transmissioni Srl Viale A. De Gasperi, 17/19 I-20020 Lainate (Mi)

Japan Miki Pulley Co.Ltd. 1-39-7, Komatsubara Zama-City, Kanagawa JAPAN 228-857

Korea Marine Equipment Korea Co. Ltd. #823, Ocean Tower 760-3 Woo 1 Dong Haeundae-Gu, Busan

Mexico CENTA CORP. 815 Blackhawk Drive Westmont, IL 60559, USA

Netherlands CENTA Nederland b.V. Nijverheidsweg 4 NL-3251 LP Stellendam

> New Zealand Brevini Ltd. 9 Bishop Croke Place East Tamaki PO Box 58-418 - Greenmount NZ-Auckland

🕬 Norwav CENTA transmisjoner A.S. P.O.B. 1551 N-3206 Sandefjord

> Poland Industry: Marine: IOW Trade FBSM Engineering & Co. Sp.z.o.o. ul. Zwolenska 17 UL.Podmokla 3 04-761 Warszawa 71-776 Szczecin

Portugal PINHOL Import Dep. Avenida 24 de Julho, 174 P - LISBOA 1350

D-42755 Haan P.O.B 1125 tel.: ++49-2129-912-0 e-mail: centa@centa.de

Singapore CENTA TRANSMISSIONS FAR EAST PTE LTD 51 Bukit Batok Crescent #05-24 Unity Centre Singapore 658077

> South Africa Entramarc (PTY) Ltd. P.O. Box 69189 2021 Bryanston ZA - Transvaal

Spain Herrekor S.A. Zamoka Lantegialdea Oialume Bidea 25, Barrio Ergobia ES-20116 Astigarraga-Gipuzkoa

Metalgatan 21A S-26272 Ängelholm Switzerland

Hydratec, Hydraulic+Antriebs-Technik AG Chamerstrasse 172 CH-6300 Zug

Taiwan ACE Pillar Trading Co., Ltd. No. 2 Lane 61, Sec. 1. Kuanfu Road, San-Chung City, R.O.C. Taipei

Turkey *Industry:* Erler Makina ve Gida Sanayi Ltd.Sti. Ivedik Organize Sanayi Has Emek Sitesi 676. Sokak No. 3 Ostim/Ankara

USA CENTA CORP. 815 Blackhawk Drive Westmont, IL 60559

CENTA

CENTA Antriebe is also represented in: Bulgaria, CSFR, Hungaria, Jugoslavia, Romania and further countries.

Kirschey GmbH

Bergische Strasse 7 Fax: ++49-2129-2790 http://www.centa.de